If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+152x+552=0
a = 4; b = 152; c = +552;
Δ = b2-4ac
Δ = 1522-4·4·552
Δ = 14272
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14272}=\sqrt{64*223}=\sqrt{64}*\sqrt{223}=8\sqrt{223}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(152)-8\sqrt{223}}{2*4}=\frac{-152-8\sqrt{223}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(152)+8\sqrt{223}}{2*4}=\frac{-152+8\sqrt{223}}{8} $
| 6x+1=4(3x-7) | | -0.1x^2-x+40=0.1x^2+2x+20 | | 1.5x^2+5x=92 | | 32/8=x | | (2y+5)(y+7)=0 | | 0.007=10x | | X-8x-4+7=18x3x+5 | | w(w+9)(w-4)=180 | | (1/3)^x=x+4 | | 6^4x-3=30 | | 1.3x=15.6 | | 3x*2x=4800 | | 2m^2/3+m-1=0 | | (3x)(2x)=4800 | | R^+10r=7 | | 1/4d-2/3=7/12 | | 5x+9=x=77 | | n^2+16n-720=0 | | −18=5x+2 | | 0.6-0.8=-6+w | | 5x−8=27 | | 2q+16=4q | | 5c+12=8c+11.64 | | Y=-14x+-104 | | 100+6x160=10x | | x^2-31x+169=0 | | 25x-x^2=10 | | 10^(z+4)+10^(z+3)=11 | | 10^z+4+10^z+3=11 | | 16t^2+130t+70=30 | | 30+2=4x+8 | | 30=16t^2+130t+70 |